Classical Orthogonal Polynomials: a General Difference Calculus Approach
نویسنده
چکیده
It is well known that the classical families of orthogonal polynomials are characterized as eigenfunctions of a second order linear differential/difference operator with polynomial coefficients. In this paper we present a study of classical orthogonal polynomials in a more general framework by using the differential (or difference) calculus and Operator Theory. In such a way we obtain a unified representation of them. Furthermore, some well known results related to the Rodrigues Operator, introduced in Section 3, are deduced. A more general Characterization Theorem than the one given in [4] and [2] for the q-polynomials of the q-Askey and Hahn Tableaux, respectively, is established. Finally, the families of Askey-Wilson polynomials, q-Racah polynomials, Al-Salam & Carlitz I and II, and q-Meixner are considered.
منابع مشابه
Q-classical Orthogonal Polynomials: a General Difference Calculus Approach
It is well known that the classical families of orthogonal polynomials are characterized as the polynomial eigenfunctions of a second order homogenous linear differential/difference hypergeometric operator with polynomial coefficients. In this paper we present a study of the classical orthogonal polynomials sequences, in short classical OPS, in a more general framework by using the differential...
متن کاملM ay 2 00 7 Classical orthogonal polynomials A general difference calculus approach
It is well known that the classical families of orthogonal polynomials are characterized as eigenfunctions of a second order linear differential/difference operator. In this paper we present a study of classical orthogonal polynomials in a more general context by using the differential (or difference) calculus and Operator Theory. In such a way we obtain a unified representation of them. Furthe...
متن کاملOn Fourth-order Difference Equations for Orthogonal Polynomials of a Discrete Variable: Derivation, Factorization and Solutions
We derive and factorize the fourth-order difference equations satisfied by orthogonal polynomials obtained from some modifications of the recurrence coefficients of classical discrete orthogonal polynomials such as: the associated, the general co-recursive, co-recursive associated, co-dilated and the general co-modified classical orthogonal polynomials. Moreover, we find four linearly independe...
متن کاملRecurrence equations and their classical orthogonal polynomial solutions
The classical orthogonal polynomials are given as the polynomial solutions pnðxÞ of the differential equation rðxÞy00ðxÞ þ sðxÞy0ðxÞ þ knyðxÞ 1⁄4 0; where rðxÞ is a polynomial of at most second degree and sðxÞ is a polynomial of first degree. In this paper a general method to express the coefficients An; Bn and Cn of the recurrence equation pnþ1ðxÞ 1⁄4 ðAnxþ BnÞpnðxÞ Cnpn 1ðxÞ in terms of the g...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009